Objectives

- **Improve Health Care** through SMART, Convenient Wearable Sensors
- **Develop Human Energy Harvesting** towards a “fit and forget” and “no recharge” goal.
- **Target PREM: Patient Environment Monitor**
 - Role is to Intelligently Record and Compress
 - Compute HR and HRV and Record
 - 2.5mW to 3mW
 - 1.5mW to 3mW
- **Apply the technology in Real and Demanding Clinical Use cases**, ensuring fitness for purpose
 - Epilepsy in children, Alzheimer’s Disease in the elderly
 - Motion
- **Involve Industry** in multidisciplinary IT research

Wearable ICT for Zero Power medical Application

Clinical Dimension

ALZHEIMER’S disease (LREN, CHUV)

- Early DIAGNOSIS using accessible EEG is critical to drug treatment efficacy
- Novel attempt to use 124 electrodes over a longer period rather than 128 electrodes over short periods in hospital
- EEG Raw data compressed and recorded
- Algorithms applied to the data: multivariate and entropy analysis requiring networked high end machines
- Data from ECG and PEM used to improve prediction accuracy by fusing results, combining brain, emotional and environmental factor analysis

EPILEPSY in children (KISPI)

- EEG must be made more accessible to screen for epilepsy
- Todays manual methods must be enhanced with automatic brain wave aberration detection
- ECG and PEM are important to understand the context of an epileptic fit

Evaluations

- Trials will be conducted using the sensors on elderly with mild cognitive impairment and children already diagnosed with EP

Wearable Sensors

- **EEG Baseball Cap** (Brain Sensing)
 - 24 Electrodes at 512 to 1024 sample rates
 - Primarily Thermal/Solar
 - Role is to Intelligently Record and Compress
 - 1.5mW to 3mW
- **ECG Chest band** (Affect Sensing)
 - 3 Electrodes
 - Primarily Kinetic/Thermal
 - Compute HR and HRV and Record
 - 0.5mW to 1mW
- **PEM: Patient Environment Monitor** (Context Sensing)
 - A specific clinical requirement from partners
 - Used to replace self reporting which is ineffective in elderly persons with dementia and young children, provides clinicians with a hint to the context around the time of an incident recorded by the EEG and ECG sensor
- **Processing Systems**

 - UL POWER ASIC
 - MULTICORE DATA PROCESSING
 - USER INTERFACE HOMEPIC
 - CLINICAL OVERSIGHT

Energy Harvesting

- Will use a mix of Thermal Electric, Piezo-Kinetic, and Solar depending on user needs
 - **EEG Cap**. 24 electrodes include TEG sensors. With the head band provides 50 to 75 cm² harvesting area
 - **ECG Band**. 3 electrodes include TEG sensors. The chest band provides 1000 cm² kinetic harvesting area
 - **PEM**. 10 cm² solar harvesting area

EEG

- Clinical evaluation of ZPSense system based on newly developed EEG analysis tools

- Application of Entropy
 - Measures to evaluate EEG signals in AD and EP
 - which is similar to “gold standard” in AD – amyloid plaques distribution

- Integration of TEGs with optimized thermal interface for EEG

EGG

- Clinical evaluation of ZPSense system based on newly developed EEG analysis tools

- Application of Entropy
 - Measures to evaluate EEG signals in AD and EP
 - which is similar to “gold standard” in AD – amyloid plaques distribution

- Integration of TEGs with optimized thermal interface for EEG

TEGs

- Abnormal EEG synchronisation shows AD-specific pattern...
- ...or landscape of gray matter atrophy characteristic for AD

- Alzheimer’s disease
- Epilepsy in children
- Primarily Kinetic/Solar
- Compute HR and HRV and Record
- 0.5mW to 1mW